Tetrahedron Letters No. 51/52, pp 4495 - 4498, 1974. Pergamon Press. Printed in Great Britain.

THE MECHANISM OF ANODIC OXIDATION OF ALKYL IODIDES. ELECTROPHILICITY OF IODINE(I). Larry L. Miller^{*} and Bruce F. Watkins Department of Chemistry Colorado State University Fort Collins, Colorado 80521

(Received in USA 4 June 1974; received in UK for publication 11 November 1974)

Alkyl iodides form alkyl acetamides when oxidized at platinum in acetonitrile, and the initial study of this process indicated that carbonium ions were intermediates in certain of the reactions.¹ Keating and Skell then studied the oxidation of n-propyl bromide in methanol and suggested that primary alkyl halide oxidations generate hot carbonium ions (path a).² Laurent and coworkers³ have, however, recently gained evidence that an S_N^2 type displacement on an initially-formed cation radical is involved in primary alkyl iodide oxidations (path b) in acetonitrile.

The original publication on this subject¹ indicated that plots of i <u>vs</u> t, i <u>vs</u> [RI], and coulometry were not consistent with the simple pathways \underline{a} or \underline{b} . The involvement of iodine oxidation was suspected and this was iterated⁴ when it was discovered that a stable iodine(I) species could be formed by iodine oxidation under the same conditions employed for alky1 iodide oxidation.⁴ We have now demonstrated that an indirect reaction involving iodine(I) and alky1 iodide (path \underline{c}) contributes significantly to anodic alky1 iodide chemistry.

Iodine(I)⁵ was generated by exhaustive (n=2.1) oxidation of I₂ in acetonitrile at 1.8 V and **added** to acetonitrile solutions of alkyl iodides. Iodine was produced instantaneously and the **alkyl acetamide** was isolated upon work-up (Table I).

Substrate	Product (% Yield)	
2-octyl iodide	2-octylacetamide (54) 3-octylacetamide (22)	
l-Adamantyl iodide	l-adamantylacetamide (60)	
Cyclohexyl iodide	cyclohexylacetamide (45)	
n-Propyl iodide	n-propylacetamide (19) isopropylacetamide (12)	

Table I. Reactions Products of Iodine(I) and Alkyl Halides.^a

a. Addition of 100 ml of a solution 0.2 M in iodine(I) to 25 ml of a solution containing 0.05 moles of alkyl iodide in acetonitrile.

It is known^{1,4} and we have confirmed that iodine is oxidized to iodine(I) at the potentials necessary for alkyl iodide oxidation. Since iodine is present in the anolyte the two reactions necessary for g must proceed under the oxidation conditions.

Although essentially all of the alkyl acetamide product could come from path c via a high I_2 -I(I) concentration near the anode surface the contribution of paths $a_{,b}$ is difficult to determine. It could well change during the course of a preparative oxidation in a divided cell since iodine builds up as alkyl iodide is consumed. We have tried to probe this point by examining the products from S-2-octyl iodide (Table II).

Substrate	Products	Electrolysis ^a	Iodine(I) ^b
S-2-Octyl iodide	R-2-octy]acetamide	53	47
	3-octylacetamide	28	24 29
n-Propyl iodide	n-propylacetamide <u>iso</u> -propylacetamide	59 41	61 39

Table II.	Product Ratios	from Electrolytic and	d Iodine(I) Reactions.
	· · · · · · · · · · · · ·		

a. Electrolysis of 4 mmole alkyl lodide in a divided cell at Pt using 100 ml CH_3CN , LiClO₄. b. Addition of 100 ml of a solution 0.2 M in iodine(I) to 25 ml of a solution containing 0.05 moles of alkyl iodide in acetonitrile.

3-Octylacetamide (\sim 25%) and 2-octylacetamide (\sim 75%) are formed in the same yield by both direct oxidation⁶ and by reaction with the iodonium species. Furthermore, the stereochemistry of the 2-octylacetamide⁷ is essentially identical in both reactions (49% racemization, 51% inversion). This indicates great similarity in the two processes, but does not resolve the problem of how much (if <u>any</u> significant amount) of the oxidation involves direct oxidation of alkyl iodide. We have found that this product ratio is not very sensitive to leaving group since acid catalyzed solvolysis of 2-octanol in acetonitrile also gives a similar ratio. In the case of n-propyl iodide an identical isomer ratio was again observed by direct oxidation and iodonium reactions supporting the above conclusions.

Further exploration of the role of water in this process and an explanation of the i,t curves will be reported in a full paper on iodine(I) reactivity.

Acknowledgement. This work was supported by the National Science Foundation.

REFERENCES

- 1. L. L. Miller and A. K. Hoffmann, J. Amer. Chem. Soc, 89, 593 (1967).
- 2. J. T. Keating and P. S. Skell, J. Org. Chem., 34, 1479 (1969).
- A Laurent, E. Laurent and R. Tardivel, <u>Tet. Letts.</u>, 4861 (1973); A. Laurent and R. Tardivel, <u>Comp. Rend. Acad. Sci.</u>, 272, Series C, 8 (1971).
- 4. L. L. Miller, E. P. Kujawa and C. B. Campbell, <u>J. Amer. Chem</u>. <u>Soc</u>., <u>9</u>2, 2821 (1970).
- 5. The structure of the iodonium species may be CH_3^+CNI or N-iodoacetamide.⁴
- 6. Oxidation to 1.0 Far/mole and 2.0 Far/mole gave the same isomer ratio and optical purity.
- 7. The S-2-octyl iodide (α_D^{24} + 41.3°, op. purity 66%) was prepared from R-2-octanol.
- 8. The 2-octyl acetamide was purified by glc and compared with authentic S-2-octylacetamide $\binom{20}{\alpha_D}$ ~ 2.516°, op. purity 91%) prepared from the sequence R-2-octanol, R-2-octyl tosylate, S-2-octyl azide, S-2-octylamine, S-2-octylacetamide.